Visible evidence for the Birch and Swinnerton-Dyer conjecture for modular abelian varieties of analytic rank zero
نویسندگان
چکیده
This paper provides evidence for the Birch and Swinnerton-Dyer conjecture for analytic rank 0 abelian varieties Af that are optimal quotients of J0(N) attached to newforms. We prove theorems about the ratio L(Af , 1)/ΩAf , develop tools for computing with Af , and gather data about certain arithmetic invariants of the nearly 20, 000 abelian varieties Af of level ≤ 2333. Over half of these Af have analytic rank 0, and for these we compute upper and lower bounds on the conjectural order of X(Af ). We find that there are at least 168 such Af for which the Birch and Swinnerton-Dyer conjecture implies that X(Af ) is divisible by an odd prime, and we prove for 37 of these that the odd part of the conjectural order of X(Af ) really divides #X(Af ) by constructing nontrivial elements of X(Af ) using visibility theory. We also give other evidence for the conjecture. The appendix, by Cremona and Mazur, fills in some gaps in the theoretical discussion in their paper on visibility of Shafarevich-Tate groups of elliptic curves.
منابع مشابه
Visible Evidence for the Birch and Swinnerton-dyer Conjecture for Modular Abelian Varieties of Analytic Rank Zero Amod Agashe and William Stein, with an Appendix by J. Cremona and B. Mazur
This paper provides evidence for the Birch and Swinnerton-Dyer conjecture for analytic rank 0 abelian varieties Af that are optimal quotients of J0(N) attached to newforms. We prove theorems about the ratio L(Af , 1)/ΩAf , develop tools for computing with Af , and gather data about certain arithmetic invariants of the nearly 20, 000 abelian varieties Af of level ≤ 2333. Over half of these Af ha...
متن کاملArithmetic Algebraic Geometry
[3] , Visible evidence for the Birch and Swinnerton-Dyer conjecture for modular abelian varieties of analytic rank zero, Math. Finiteness results for modular curves of genus at least 2, Amer.
متن کاملA p-adic analogue of the conjecture of Birch and Swinnerton-Dyer for modular abelian varieties
Mazur, Tate, and Teitelbaum gave a p-adic analogue of the Birch and Swinnerton-Dyer conjecture for elliptic curves. We provide a generalization of their conjecture in the good ordinary case to higher dimensional modular abelian varieties over the rationals by constructing the padic L-function of a modular abelian variety and showing it satisfies the appropriate interpolation property. We descri...
متن کاملL-functions with Large Analytic Rank and Abelian Varieties with Large Algebraic Rank over Function Fields
The goal of this paper is to explain how a simple but apparently new fact of linear algebra together with the cohomological interpretation of L-functions allows one to produce many examples of L-functions over function fields vanishing to high order at the center point of their functional equation. Conjectures of Birch and Swinnerton-Dyer, Bloch, and Beilinson relate the orders of vanishing of ...
متن کاملOn the elliptic curves of the form $ y^2=x^3-3px $
By the Mordell-Weil theorem, the group of rational points on an elliptic curve over a number field is a finitely generated abelian group. There is no known algorithm for finding the rank of this group. This paper computes the rank of the family $ E_p:y^2=x^3-3px $ of elliptic curves, where p is a prime.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Math. Comput.
دوره 74 شماره
صفحات -
تاریخ انتشار 2005